Modern software projects include automated tests written to check the programs’ functionality. The set of functions invoked by a test is called the trace of the test, and the action of obtaining a trace is called tracing. There are many tracing tools since traces are useful for a variety of software engineering tasks such as test generation, fault localization, and test execution planning. A major drawback in using test traces is that obtaining them, i.e., tracing, can be costly in terms of computational resources and runtime. Prior work attempted to address this in various ways, e.g., by selectively tracing only some of the software components or compressing the trace on-the-fly. However, all these approaches still require building the project and executing the test in order to get its (partial, possibly compressed) trace. This is still very costly in many cases. In this work, we propose a method to predict the trace of each test without executing it, based only on static properties of the test and the tested program, as well as past experience on different tests. This prediction is done by applying supervised learning to learn the relation between various static features of test and function and the likelihood that one will include the other in its trace. Then, we show how to use the predicted traces in a recent automated troubleshooting paradigm called Learn Diagnose and plan (LDP), instead of the actual, costly-to-obtain, test traces. In a preliminary evaluation on real-world open-source projects, we observe that our prediction quality is reasonable. In addition, using our trace predictions in LDP yields almost the same results comparing to when using real traces, while requiring less overhead.